Electrically injected solid-state surface acoustic wave phonon laser

  • Morgan, D. Surface acoustic wave filters: with applications to electronic communications and signal processing (Academic Press, 2010).

  • Hashimoto, K. Surface acoustic wave devices in communications: modeling and simulation Vol. 116 (Springer, 2000).

  • Mandal, D. & Banerjee, S. Surface acoustic wave (SAW) sensors: physics, materials and applications. Sensors 22820 (2022).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Lu, X. et al. Harnessing exceptional points to sense ultra-sensitive sound waves. Microsystem. Nanwing. 1144 (2025).

    condition
    advertisements
    Magazines
    PubMed Central

    Google Scholar

  • Li, X. et al. Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. ing matter. Chemistry. A 119216-9238 (2023).

    condition
    advertisements
    CAS

    Google Scholar

  • Shaw, L. et al. Microwave-to-optical conversion using thin-film lithium niobate acoustic resonators. optical 61498-1505 (2019).

    condition
    advertisements
    CAS

    Google Scholar

  • Hassanein, A. E. et al. Efficient and large-scale opto-acoustic modification on thin-film lithium niobate for microwave-to-photonic conversion. Photon. Accuracy. 91182-1190 (2021).

    condition
    CAS

    Google Scholar

  • Kittlaus, E. A. et al. Electrically driven acoustic optics and broadband nonreciprocity in silicon photonics. Nat. Photon. 1543-52 (2021).

    condition
    advertisements
    CAS

    Google Scholar

  • Yang, S. et al. Harmonic acoustics for dynamic and selective particle processing. Night. rainy. 21540-546 (2022).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Ding, X. et al. Surface acoustic wave microfluidics. Laboratory chip 133626-3649 (2013).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Chen, X. et al. Acoustic valves in microfluidic channels for droplet manipulation. Laboratory chip 213165-3173 (2021).

    condition
    CAS
    Magazines

    Google Scholar

  • Whitley, S. J. et al. Spin-phonon interactions in silicon carbide treated by Gaussian acoustics. Nat. Phys. 15490-495 (2019).

    condition
    CAS

    Google Scholar

  • Maiti, S. et al. Coherent acoustic control of silicon vacancy rotation in diamond. Nat. common. 11193 (2020).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Aranjuez Arreola, P. et al. Solving the energy levels of the nanomechanical oscillator. nature 571537-540 (2019).

    condition
    advertisements
    CAS
    Magazines

    Google Scholar

  • Schutz, M.J. in Quantum dots for quantum information processing: controlling and exploiting the quantum dot environment 143–196 (Springer, 2017).

  • Zhou, Y. et al. Electrically conductive active Brillouin waveguide for microwave photometrics. Nat. common. 156796 (2024).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Sletten, LR, Moores, BA, Viennot, JJ & Lehnert, KW Resolving phonon states in a multimode cavity with a double-slit qubit. Phys. pastor. 9021056 (2019).

    condition
    CAS

    Google Scholar

  • Qiao, H. et al. Acoustic phonon phase gates with phonon detection for number resolution. Nat. Phys.211801-1805 (2025).

  • Zevari, A. et al. Distribution of quantum information on a chip using mobile phonons. Science fiction. circumstance. 8eadd2811 (2022).

    condition
    Magazines
    PubMed Central

    Google Scholar

  • Agostini, M. & Cecchini, M. Ultra-high frequency (UHF) surface acoustic waves (SAW) microfluidics and biosensors. Nanotechnology 32312001 (2021).

    condition
    advertisements
    CAS

    Google Scholar

  • Lee, P. et al. Acoustic separation of circulating cancer cells. Brooke. Natl Acad. Science fiction. USA 1124970-4975 (2015).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Zhou, Y. et al. Engineering nonmutual dissipation via strong coupling with a continuum of modes. Phys. Rev. X 14021002 (2024).

    CAS

    Google Scholar

  • Friedman, J.M. et al. Gigahertz frequency, optical-acoustic phase modulation of visible light in an optical circuit manufactured by CMOS. Preprint in https://doi.org/10.48550/arXiv.2502.08012 (2025).

  • Li, B., Lin, Q. & Li, M. LiDAR angular frequency resolution using chip-scale acoustic-optical beam steering. nature 620316-322 (2023).

    condition
    advertisements
    CAS
    Magazines

    Google Scholar

  • Lin Q et al. Multibeam optical guidance and communication using integrated optical-acoustic arrays. Nat. common. 164501 (2025).

  • Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in the artificial frequency dimension using integrated hollow acoustic optics. Nat. common. 135426 (2022).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Newman, T. et al. An acoustic interface between a superconducting quantum processor and quantum lattice spin memories. npj Quantity Inf. 7121 (2021).

    condition
    advertisements

    Google Scholar

  • Nohra, R. et al. Low-cycle vacuum compression in nanophotonics. sciences 3771333–1337 (2022).

    condition
    advertisements
    CAS
    Magazines

    Google Scholar

  • Tucker, E. Amplification of 9.3 km/s ultrasonic pulses by maser action in sapphire. Phys. Rev. Lit. 6547 (1961).

    condition
    advertisements

    Google Scholar

  • Play, PA, Develophole, JI & The Wine, HW Stimulation of reverberation or phonons in an academic cavity. Phys. Rev. B 552925 (1997).

    condition
    advertisements
    CAS

    Google Scholar

  • Vahalla, K. et al. Phonon laser. Nat. Phys. 5682-686 (2009).

    condition
    CAS

    Google Scholar

  • Pettit, R. M. et al. Optical phonon laser tweezers. Nat. Photon. 13402-405 (2019).

    condition
    advertisements
    CAS

    Google Scholar

  • Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a two-level tunable system. Phys. Rev. Lit. 104083901 (2010).

    condition
    advertisements
    Magazines

    Google Scholar

  • Beardsley, R.P., Akimov, A.V., Henini, M. & Kent, A.J. Coherent terahertz sound amplification and spectral line narrowing in a superlattice. Phys. Rev. Lit. 104085501 (2010).

    condition
    advertisements
    CAS
    Magazines

    Google Scholar

  • Chavatinos, D. L. et al. Polariton driven phonon laser. Nat. common. 114552 (2020).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Baboccio Fernandez, I. et al. Polariton cascade phonon laser. Preprint in https://doi.org/10.48550/arXiv.2505.17336 (2025).

  • Ohtani, K. et al. Electrically pumped polariton phonon laser. Science fiction. circumstance. 5,out163 (2019).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Okada, J. & Matino, H. Continuous oscillations of electroacoustic current in CDs. Japan. J. Phys Appl. 3698 (1964).

    condition
    advertisements
    CAS

    Google Scholar

  • Maines, J.D. & Paige, E.G.S. High current and self-locking of electroacoustic oscillator modes. Joint solid state. 8421-425 (1970).

    condition
    advertisements
    CAS

    Google Scholar

  • Gokhale, V. J. & Rais-Zadeh, M. Phonon-electron interactions in bulk piezoelectric semiconductor acoustic wave resonators. Science fiction. representative. 45617 (2014).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Mansoorzare, H. & Abdolvand, R. Electroacoustic amplification in lateral piezo-silicon composite resonant cavities. in Brooke. 2019 Joint Conference of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum (EFTF/IFC)1–3 (IEEE, 2019).

  • Hackett, L. et al. Non-reciprocating PV amplifiers with net gain and low noise in continuous operation. Nat. Electron. 676-85 (2023).

    Google Scholar

  • Hackett, L. et al. Towards single-chip RF signal processing via electroacoustic electron-phonon interactions. Nat. common. 122769 (2021).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Hackett, L. et al. Giant electron-mediated acoustic nonlinearities in piezoelectric semiconductor heterostructures. Night. rainy. 231386–1393 (2024).

    condition
    advertisements
    CAS
    Magazines

    Google Scholar

  • Izhar, MMA et al. Cyclically polished aluminum scandium nitride bulk acoustic wave resonators and filters for communications in the 6G era. Microsystem. Nanwing. 1119 (2025).

    condition
    advertisements
    CAS
    Magazines
    PubMed Central

    Google Scholar

  • Kino, GS & Reeder, TM The normal mode theory of the Rayleigh wave amplifier. IEEE Trans. Electronic devices 18909-920 (1971).

    condition
    advertisements

    Google Scholar

  • Peppard, A. Audio amplification in semiconductors and metals. Philos. Mag. 8161-165 (1963).

    condition
    advertisements

    Google Scholar

  • Coldren, The Homogeneous acoustic surface wave amplifiers. Doctoral dissertation, Stanford University. (1972).

  • Chatterjee, E., Soh, D. & Eichenfield, M. Quantum-limited piezoelectric amplification in a 2DEG piezoelectric heterostructure. Preprint in http://arxiv.org/html/2510.09248v2 (2025).

  • Danicki, E. Reverse multistrip coupler. Ultrasonics 31421-424 (1993).

    condition

    Google Scholar

  • Keysight Technologies. Measurement of phase noise using a real-time sampling oscilloscope. https://docs.keysight.com/kkbopen/measuring-phase-noise-with-a-real-time-sampling-oscillscope-584447063.html (2025).

  • Rea, R.W Oscillator design and computer simulation (Prentice-Hall, 1990).

  • Leave a Comment