
Morgan, D. Surface acoustic wave filters: with applications to electronic communications and signal processing (Academic Press, 2010).
Hashimoto, K. Surface acoustic wave devices in communications: modeling and simulation Vol. 116 (Springer, 2000).
Mandal, D. & Banerjee, S. Surface acoustic wave (SAW) sensors: physics, materials and applications. Sensors 22820 (2022).
Google Scholar
Lu, X. et al. Harnessing exceptional points to sense ultra-sensitive sound waves. Microsystem. Nanwing. 1144 (2025).
Google Scholar
Li, X. et al. Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. ing matter. Chemistry. A 119216-9238 (2023).
Shaw, L. et al. Microwave-to-optical conversion using thin-film lithium niobate acoustic resonators. optical 61498-1505 (2019).
Hassanein, A. E. et al. Efficient and large-scale opto-acoustic modification on thin-film lithium niobate for microwave-to-photonic conversion. Photon. Accuracy. 91182-1190 (2021).
Kittlaus, E. A. et al. Electrically driven acoustic optics and broadband nonreciprocity in silicon photonics. Nat. Photon. 1543-52 (2021).
Yang, S. et al. Harmonic acoustics for dynamic and selective particle processing. Night. rainy. 21540-546 (2022).
Google Scholar
Ding, X. et al. Surface acoustic wave microfluidics. Laboratory chip 133626-3649 (2013).
Google Scholar
Chen, X. et al. Acoustic valves in microfluidic channels for droplet manipulation. Laboratory chip 213165-3173 (2021).
Google Scholar
Whitley, S. J. et al. Spin-phonon interactions in silicon carbide treated by Gaussian acoustics. Nat. Phys. 15490-495 (2019).
Maiti, S. et al. Coherent acoustic control of silicon vacancy rotation in diamond. Nat. common. 11193 (2020).
Google Scholar
Aranjuez Arreola, P. et al. Solving the energy levels of the nanomechanical oscillator. nature 571537-540 (2019).
Google Scholar
Schutz, M.J. in Quantum dots for quantum information processing: controlling and exploiting the quantum dot environment 143–196 (Springer, 2017).
Zhou, Y. et al. Electrically conductive active Brillouin waveguide for microwave photometrics. Nat. common. 156796 (2024).
Google Scholar
Sletten, LR, Moores, BA, Viennot, JJ & Lehnert, KW Resolving phonon states in a multimode cavity with a double-slit qubit. Phys. pastor. 9021056 (2019).
Qiao, H. et al. Acoustic phonon phase gates with phonon detection for number resolution. Nat. Phys.211801-1805 (2025).
Zevari, A. et al. Distribution of quantum information on a chip using mobile phonons. Science fiction. circumstance. 8eadd2811 (2022).
Google Scholar
Agostini, M. & Cecchini, M. Ultra-high frequency (UHF) surface acoustic waves (SAW) microfluidics and biosensors. Nanotechnology 32312001 (2021).
Lee, P. et al. Acoustic separation of circulating cancer cells. Brooke. Natl Acad. Science fiction. USA 1124970-4975 (2015).
Google Scholar
Zhou, Y. et al. Engineering nonmutual dissipation via strong coupling with a continuum of modes. Phys. Rev. X 14021002 (2024).
Friedman, J.M. et al. Gigahertz frequency, optical-acoustic phase modulation of visible light in an optical circuit manufactured by CMOS. Preprint in https://doi.org/10.48550/arXiv.2502.08012 (2025).
Li, B., Lin, Q. & Li, M. LiDAR angular frequency resolution using chip-scale acoustic-optical beam steering. nature 620316-322 (2023).
Google Scholar
Lin Q et al. Multibeam optical guidance and communication using integrated optical-acoustic arrays. Nat. common. 164501 (2025).
Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in the artificial frequency dimension using integrated hollow acoustic optics. Nat. common. 135426 (2022).
Google Scholar
Newman, T. et al. An acoustic interface between a superconducting quantum processor and quantum lattice spin memories. npj Quantity Inf. 7121 (2021).
Google Scholar
Nohra, R. et al. Low-cycle vacuum compression in nanophotonics. sciences 3771333–1337 (2022).
Google Scholar
Tucker, E. Amplification of 9.3 km/s ultrasonic pulses by maser action in sapphire. Phys. Rev. Lit. 6547 (1961).
Google Scholar
Play, PA, Develophole, JI & The Wine, HW Stimulation of reverberation or phonons in an academic cavity. Phys. Rev. B 552925 (1997).
Vahalla, K. et al. Phonon laser. Nat. Phys. 5682-686 (2009).
Pettit, R. M. et al. Optical phonon laser tweezers. Nat. Photon. 13402-405 (2019).
Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a two-level tunable system. Phys. Rev. Lit. 104083901 (2010).
Google Scholar
Beardsley, R.P., Akimov, A.V., Henini, M. & Kent, A.J. Coherent terahertz sound amplification and spectral line narrowing in a superlattice. Phys. Rev. Lit. 104085501 (2010).
Google Scholar
Chavatinos, D. L. et al. Polariton driven phonon laser. Nat. common. 114552 (2020).
Google Scholar
Baboccio Fernandez, I. et al. Polariton cascade phonon laser. Preprint in https://doi.org/10.48550/arXiv.2505.17336 (2025).
Ohtani, K. et al. Electrically pumped polariton phonon laser. Science fiction. circumstance. 5,out163 (2019).
Google Scholar
Okada, J. & Matino, H. Continuous oscillations of electroacoustic current in CDs. Japan. J. Phys Appl. 3698 (1964).
Maines, J.D. & Paige, E.G.S. High current and self-locking of electroacoustic oscillator modes. Joint solid state. 8421-425 (1970).
Gokhale, V. J. & Rais-Zadeh, M. Phonon-electron interactions in bulk piezoelectric semiconductor acoustic wave resonators. Science fiction. representative. 45617 (2014).
Google Scholar
Mansoorzare, H. & Abdolvand, R. Electroacoustic amplification in lateral piezo-silicon composite resonant cavities. in Brooke. 2019 Joint Conference of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum (EFTF/IFC)1–3 (IEEE, 2019).
Hackett, L. et al. Non-reciprocating PV amplifiers with net gain and low noise in continuous operation. Nat. Electron. 676-85 (2023).
Google Scholar
Hackett, L. et al. Towards single-chip RF signal processing via electroacoustic electron-phonon interactions. Nat. common. 122769 (2021).
Google Scholar
Hackett, L. et al. Giant electron-mediated acoustic nonlinearities in piezoelectric semiconductor heterostructures. Night. rainy. 231386–1393 (2024).
Google Scholar
Izhar, MMA et al. Cyclically polished aluminum scandium nitride bulk acoustic wave resonators and filters for communications in the 6G era. Microsystem. Nanwing. 1119 (2025).
Google Scholar
Kino, GS & Reeder, TM The normal mode theory of the Rayleigh wave amplifier. IEEE Trans. Electronic devices 18909-920 (1971).
Google Scholar
Peppard, A. Audio amplification in semiconductors and metals. Philos. Mag. 8161-165 (1963).
Google Scholar
Coldren, The Homogeneous acoustic surface wave amplifiers. Doctoral dissertation, Stanford University. (1972).
Chatterjee, E., Soh, D. & Eichenfield, M. Quantum-limited piezoelectric amplification in a 2DEG piezoelectric heterostructure. Preprint in http://arxiv.org/html/2510.09248v2 (2025).
Danicki, E. Reverse multistrip coupler. Ultrasonics 31421-424 (1993).
Google Scholar
Keysight Technologies. Measurement of phase noise using a real-time sampling oscilloscope. https://docs.keysight.com/kkbopen/measuring-phase-noise-with-a-real-time-sampling-oscillscope-584447063.html (2025).
Rea, R.W Oscillator design and computer simulation (Prentice-Hall, 1990).